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Abstraet. We have modiKed an existing real space renormalization group scheme to remove 
some physidy inconsistent feam and used the rectified method to study the ground state 
of the one-dimensional Hubbard model with nearest-neighbour repulsion and the bon-ge 
interaction for half filling. For the nearest-neighbour interaction we find a phase diagram which 
agrees Ncely with the Monte Carlo results. For the case of bond-charge interaction we have 
reproduced some available exact results and found some interesting information in the parameter 
regime where no exact solution is available. 

1. Introduction 

Since the discovery of high-temperature superconductivity in layered perovskites [ 11 the 
studies on the role of electron-electron interaction in different electronic systems have 
become extremely impoaant [2]. In this context the simplest model one can think of is the 
Hubbard model 131 where only the on-site electronic correlation has been taken into account. 
But often the range of the interaction is comparable to the lattice spacing. Consequently, 
the inclusion of the nearest-neighbour correlations is required. In general an interacting 
electronic system can be described by a tight-binding Hamiltonian of the form [3] 

where c/# (ci,,) creates (annihilates) a particle with spin U in a Wannier orbital located at 
site i; the corresponding number operator is ni, = C ! ~ C ~ ~ .  cj is the Fourier transform of 
the band energy and (ijll/r[kZ) denotes the matrix element of thecoulomb interaction with 
respect to the Wannier orbitals located at sites i, j ,  k, 1. Assuming for simplicity that only 
nearest-neighbour overlap terms are important compared to the longer-range overlaps we 
are left with the following relevant mafxix elements of the Coulomb interaction: 

.U = (iill/rlii) 

V = (ijll/rlij) 

W = (ijll/rlji) = (ii[l/rljj) 

X = (ii[l/r[ij) 

where i and j are nearest neighbours. 

0953-8984/95n36663+12$1950 @ 1995 IOP Publishing Ltd 6663 



6664 B Bhanacharyya and S Si1 

The basic approximation introduced by Hubbard was to neglect all other interaction 
terms apart from U. the on-site Coulomb repulsion. The basis of such an approximation 
was justified by Hubbard [3] on the following grounds. For 3d electrons in transition metals 
U - 20 eV while the next important term V - 6 eV though actually V is reduced to 2-3 
eV due to the screening effect of the conduction electrons. Other terms are even smaller 
e.g. X - 0.5 eV and W - $ eV. This simplified model containing only the kinetic energy 
term and the on-site U term is believed to bear the essential physics of narrow-energy-band 
systems. But it is always interesting to note the physical consequences of the inclusion of 
other interactions because they may not be of negligible magnitude in other systems e.g. 1D 
polyene chains [4]. Though it is physically expected that U > V > X > W should hold in 
general it is not always expected that, in particular, V and X be much smaller than U. As 
an example, for benzene, U N 17 eV, V N 9 eV, X N 3.3 eV and W N 0.9 eV [5]. So we 
retain the nearest-neighbour interaction V and the so-called bond-charge interaction X and 
obtain the following one-band generalized Hubbard Hamiltonian in 1D 

with f = -Zj for i, j nearest neighbours (denoted by a sum over ( i j ) )  and U, V ,  X, t 2 0. 
Here n; = ni, + ni-,,; p is the chemical potential. 

In its simplest form containing the nearest-neighbour hopping t and the on-site Coulomb 
repulsion U, the Hamiltonian (3) is exactly solvable only in one dimension (1D) [6]. The 
more generalized versions, e.g. one including the nearest-neighbour repulsion term V or 
the bond-charge interaction X, are investigated by using different approximate methods [4, 
7-10]. 

Here we apply a real space renormalization group (RG) technique [7, 11, 121 to explore 
this generalized Hubbard model in 1D for a half-filled band. The present RG scheme being 
well suited for a particle-hole (e) symmetric model we apply this method at present only 
for X = 0 and X = t for which the Hamiltonian (3) is p h  symmetric. The motivation 
behind using this method is that this relatively simple method works over the whole range 
of couplings U and V due to its non-perturbative nature and also that it includes some 
fluctuations beyond the mean-field level and this is of absolute necessity owing to the low 
dimensionality of the system. 

For X = 0 the available RG scheme [7] is found to suffer from a drawback. We have 
suggested here a remedy to this trouble and used this modified scheme for both X = 0 and 
X = f. We find that the phase diagram obtained by our scheme for X = 0, the extended 
Hubbard model, is in nice agreement with the Monte Carlo results. It is also found that this 
method reproduces all the known exact results I131 for X = f .  Moreover, the present RG 
scheme gives some interesting information in the parameter regime where no exact solution 
is available. 

In section 2 we present the difficulties of the available RG method [7] and their origin. 
Sections 3 and 4 are devoted to a discussion on the removal of these odd features in RG 
and its application for the X = 0 case. In section 5 we discuss the application of RG in 
the case of bond-charge interaction for X = f. In section 6 we present the RG results 
for bond-charge interaction along with a summary of the known exact solution. Section 7 
summarizes the present work. 
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2. llvnble with the existing RG scheme 
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In the absence of the bond-charge interaction term X the Hamiltonian (3) reduces to the 
so-called oneband extended Hubbard model. This model has been already investigated 
by means'of real space RG [7] by Fonrcade and Spronken (hereinafter referred to as FS); 
this method was an extension of the methodology originally developed by Hmch [ll] and 
Dasgupta and Pfeuty [121. 

This real space RG method works in the following way. The 1D lattice is partitioned 
into blocks of finite size. The block Hamiltonian is solved exactly and only four suitable 
low-lying states are retained. Then the intrablock part of the Hamiltonian as well as the 
interblock part are projected onto this truncated basis to renormake the coupling constants 
in the Hamiltonian. 

The major difficulty in handling the present model on a 1D lattice is that in spite of 
a global ph symmetry this Hamiltonian does not possess this symmetry for a finitesize 
block due to the end effect. This forces one to recast the Hamiltonian in a form which 
contains an 'effectively p h  symmetric' interblock p w  of the Hamiltonian [14]. This is 
precisely what FS did in rewriting the Hamiltonian in the following way [7]: 

(4) 
where the chemical potential p = U/2 + 2V is partly absorbed in the interaction terms 
and D = -p/2. The constant D accounts for the renormalization of vacuum energy. The 
Hamiltonian has several conserved quantities: total number of particles N ,  total spin S 
and the z component S, of the total spin besides the p-h symmetry (on a bipartite lattice) 
pointed out earlier. 

Using a threesite block FS retained the following four states of the block Hamiltonian: 
the lowest-energy states in the subspaces [ N  = 2, S = S, = 0) ,  [ N  = 3 ,  S = S, = i], 

Of these states, the first and the fourth are connected by p h  symmetry while the second 
and the third by spin reversal symmetry. This led to the following RG equations [7] which 
relate the renormaliied parameters (primed quantities) to the original parameters (unprimed 
ones) in the Hamiltonian: 

( N  = 3,  s = 4, = f}, [ N  = 4, s = s, = 01. 

U' = 2(EZ - E3) 
D' = 3 0  + (E2 + E3)/2 
t' = A't (5) 

V ' = p  2 v 
where E2 and E3 are the lowest eigenvalues of the subspaces ( N  = 2, S = S, = 0) and 
[N = 3, S = S, = i} respectively; and 

A = ( N  = 2, S = S, = O[$lN = 3,  S = S, = f) 
p = (1 - (N = 2, s = S, = OlnblN = 2, s = S, = 0)). 

(6) 

The superscript b refers to the boundary site of a block. The form of this Hamiltonian 
remains preserved in the RG iterations. 

This scheme reproduces the ground state energy correctly in the atomic l i t  (t = 0). 
In the presence o f t  one can also find out the spin density wave (SDW)/charge density wave 
(CDW) phase boundary from this scheme. FS also studied several other quantities like the 
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gap in the singleparticle excitation spectrum, the local moment and .the average value of 
double occupancies. 
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3 .  

Figure 1. Plot of the ground state enersylsite E against U 
inset shows the same calculated in the present modified prescription (r = 1.0). 

calculated in the FS scheme. The 

But this RG scheme, being an approximate one, suffers from some difficulties which are 
not apparent in the work of FS. These problems, as we try to point out in the present work, 
are by-products of the approximate renormalization prescription of V, the nearest-neighbour 
Coulomb interaction. In order to realize this trouble let us refer to figure 1 which shows a 
plot of the ground state energykite E against U (parametrized by different V) as obtained 
from the RG of FS. It is very strange that the curves for large (compared to hopping t) V 
values intersect each other. This suggests that in the intermediate range of the values of U 
it is possible to lower the energy by increasing a repulsive interaction (V)! But this does 
not happen for small V (V - t )  and again in the atomic l i t  there appears no trouble. 
This indicates that there might be some trouble in the renormalization in V which shows 
up in the ‘non-atomic, large-V’ regime. 

Let us now look back critically at the root of this discrepancy. The way the Hamiltonian 
(3) is rewritten by FS for the case X = 0 requires that the interblock Hamiltonian be written 
as 

a n t  -1 C ( C J , & j + I . l m  4- HC) + v c ( 1  - n j . 3 ) ( 1  - nj+l.i) (7) 

where j is the block index and 3 and 1 refer to the two adjacent terminal sites of the jth 
and (j + 1)th blocks respectively. Now we see that since we have absorbed the chemical 
potential term in the U and V parts of the Hamiltonian, the interblock part automatically 
contains a part (-- V) of the intrablock term. This part gets estimated in terms of V’, the 
renormalized quantity for V, rather than V itself. It is noteworthy that the intrablock part 
creeping into the interblock term comes originally from the chemical potential which is 
compensated at the end of the calculation and one uses p = U / 2  + 2 V  at this point. So 

j .m i 
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an error -(V - V') is introduced in the ground state energy. As V' falls off compared 
to V this error tends to show up. Up to a range V - t this offset is smeared out by the 
band energy (this was the regime FS studied) but in the case of large (compared to t )  V 
this gives rise to an odd behaviour found in figure 1. It is, however, interesting to see that 
this problem does not show up in the atomic limit; the reason is discussed in the following 
section. 

3. Remedy for the RG scheme: a possible way 

Now let us consider the atomic limit of the RG scheme of FS. The recursion relations are 
V I  

U' = U V' = v/9 for U > 2 v  
U'= 3u - 4v V ' =  v for v < U c 2 v  (8) 
U'= U - 2 v  V' = v for U 4 v 

where we see. V' < V only for U > 2V. In the atomic limit U > 2V corresponds to a 
highly degenerate wave function with singly occupied sites. Therefore the V part in the 
interblock (as well as in the intrablock) Hamiltonian reduces to zero since (1 - nj.3) and 
(1 - nj+l,l) are identically zero; consequently the precise value used for V' does not play 
any role in the calculation. So in this case there is no error in the ground state energy due 
to the renormalization of V .  For the otherregime of the parameter space V' = V and thus, 
again, there is no problem. 

It is worthwhile to note that in the atomic limit this scheme yields the exact ground state 
energy E = U / 2  for U < 2V and E = V for U 2V. But while calculating the energy the 
renormalization of V does not explicitly enter the calculation for the U > 2V region (where 
V' < V )  but it does in the other regime, U c 2V. In other words, obtaining the correct 
value of E for U c 2V does not impose any stringent requirement on 'the renormalization 
of V (any value of V' will do) within the prescription of FS. Therefore, if there is any 
inconsistency in the renormaliiation of V it'is not apparent in the atomic limit: 

To see it in detail we try to give an altzmative way of visualiziig this renormalization 
procedure for the U > 2V l i t .  We use OUT knowledge that in this limit (for f = 0) all 
the sites are singly occupied. Instead of writing the Hamiltonian in the way FS did we put 
it in the form 

Now, it is clear that at each iteration the blocks are in three-particle states with all sites singly 
occupied with an energy 2V. So to get the ground state energykite we just accumulate the 
three-particle energy at the nth stage scaled down by a factor of 3" up to infinite terms. 
This gives 

2 v  2V' 2V" 
3 32 33 

E =  -+-+-+.... 

If we have V' = 0rV then for all iterations V("+I) = 0rV(") (n being any stage of iterations) 
since wave functions are identically the same at all stages. Then from (lo), 

(11) 
2 v  E = -  

3 -a '  
But we know that to get the correct result we have to have E = 8. Using this in equation 
(1 1) we see that this demands V' = V unambiguously. 
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So, it seems that even in the atomic limit FS prescription is not adequate over the 
whole range of the parameter space and in fact V‘ = V is the unique renormalization of 
V anywhere in the atomic limit. If hopping is introduced V‘ is expected to fall off @ut 
definitely in a manner slower than that in the FS scheme). But unfortunately there is no 
way (at least right now) to find that out. Instead we take this atomic l i t  renormalization 
of V for the t # 0 case too and proceed to see what happens. 

This prescription neglects only the effect of single-particle hopping in renormalized 
V, otherwise it is perfect in the atomic limit Satisfactorily enough, this has removed the 
odd behaviour shown in figure 1. This means that still there is an approximation in the 
renormalization of V but it is not as severe as in the FS scheme. Now this error is -f (due 
to neglect of the effect of t in V’) at worst and does not spoil the scheme at large V. After 
all the present model has an intrinsic trouble of losing p h  symmetry in the finite block 
which forces some difficulty in the renormalization of V to appear at some stage or other; 
it is better to choose that approximate scheme which does not give rise to any physical 
inconsistency as in figure 1. 

4. Application of the RG. extended Hubbard model 

As a test of the proposed modification of the RG of FS we apply it to the 1D extended 
Hubbard Hamiltonian (4). Apart from the routine calculations of energy and local moment 
one might be interested in finding out the phase diagram. 

Now, as in the original FS scheme, one should be thinking of drawing an SDWKDW 
boundary by the zeros of the quantity (U, - ZV,) where U, and V, are the values of 
U and V respectively after iterations converge to a fixed point This also turns out to 
be the line where the local moment Lo goes over from a value >: to a value <: in FS 
calculation (Lo = corresponds to the free fennionic value). Now in our prescription it is 
not meaningful to study the zeros of (U, -2V,) simply because we have not renormalized 
U and V on the same footing: the effect of t enters in U’ but not at all in V’. Rather 
we should use the expectation value of a suitable operator that changes from one phase to 
another. We take the local moment for this purpose. This is expected to be less erroneous 
because its estimation is solely dependent on the wavefunction constructed iteratively. 

Using the criterion that LO crosses the value 1 we draw the SDW/CDW boundary in 
figure 2. LO z 1 corresponds to SDW phase while LO c 1 corresponds to a CDW state 
since in the CDW phase pairs start forming more and more while the SDW state favours 
single occupancies to hold a spin modulation. The phase boundary thus obtained shows a 
spectacular agreement with the available Monte Carlo data [9] which is not the case for the 
boundary drawn within the FS scheme (figure 2). 

So, at this point, it seems more %liable to proceed with this kind of prescription to 
investigate similar Hamiltonians with further generalizations. In the next section we shall 
see the effect of the bond-charge interaction on the extended Hubbard model within this 
RG framework. 

5. Application of the RG. hond-eharge interaction 

The generalized model (3) with bond-charge interaction X has been considered in several 
contexts like electron correlation effects in polyacetylene [4] or in problems regarding hole 
superconductivity [lo]. Recently it has been solved exactly for X = t over a wide range of 
parameter space for the half-filled band [131. Since f is typically -0.2-2 eV the values of 
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0 

1.25 

0.00 
0.0 2.5 5.0 7.5 I t  

U 
Figure 2. Phve dugrun of the cnended Hubbad model The phase boundary obmned LQ the 
present scheme (sobd h e )  is c o m p d  with that abmned in the FS scheme (doued h e )  and 
h Monte Carlo resul~?. The dashed line U = 2V gives the phase boundary in the atomic hmt 
(I = 0) beween a smgly occupied p3nm3gnePc phase and a CDW rcgon. 

X and t are quite comparable. So it is reasonable to look at the special case X = t where 
some exact results are also available. 

Since for half filling the chemical potential p = U / 2  + 2V for this model and we are 
considering the case X = t we can rewrite the Hamiltonian (3) in the following form: 

The diagonal quantities are renormalized 171 by the relations 

U’ = 2(E* - E3) (134  
D’ = 3 0  + $(E2 + E3) ( 1 W  

as they were in in equation (5). 
To diagonalize the off-diagonal terms one needs to evaluate the matrix elements of 

operators corresponding to the boundary site of a cell. The first term in (12) appears like a 
consfmined hopping term of amplitude t. To renormalize this we require the matrix element 
of 4, the annihilation operator of spin c at the boundary site b between renormalized cell 
states. As in equation (6). 

(U = 2, s = s, = Olcfrlu = 3, s = s, = $) = A 

so that we can identify [I 1, 121 the renormalized annihilation operator 4 by .“, = hcb. We 
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also require the matrix element of &ab_, where n: = e''.",. This is 
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b b  (U = 2, s = s, = OICt"$lU = 3, s = s, = 1, =A' 
where A and A' both are real. Matrix elements for operators of reversed spin are the same 
in magnitude (apart from the sign) due to spin flip symmetry of the Hamiltonian. Putting 
all these together we obtain the renormalized hopping: 

t' = A(A - 2A')t. (134 
For the renormalization of V we use the relation V' = V, as discussed in section 3. 

In the present scheme the ground state energy per site E is calculated from the converged 
value of the constant term D in (12) whose value at the nth stage of iteration is D").  E is 
obtained from the limit 

while the local moment is obtained by the relation 

where n: is the number operator of spin U at the central site of a block. The recursion 
relation for Lo turns out to be of the form 

Lo = a  + j3Lb (16) 
where 01 and j3 are functions o f t ,  U, V. We also compute the q transform of the density- 
density autocorrelation function defined by 

where RI and Rm are positions of Eth and mth sites respectively. Recursion of this type of 
correlation function is straightforward [Ill. 

6. Bond-charge interaction: RG resnlts 

Before discussing the results obtained by this method let us summarize the exact results 
known so far [13]. It is shown for half filling and for X = f that the ground state energy 
EO is given by 

EO = LVZ J2 
Eo = LUJ2 

if U > (4t + V)Z 
if U < (-4t + V)Z 

where Z is the coordination number of the lattice containing L sites. The ground state is a 
2'-fold-degenerate (all sites singly occupied) paramagnetic insulator in the first case while 
it is a chess-board-type CDW on a bipartite lattice in the second case. Now in OUT case 
Z = 2. So we have energylsite E = V for U > 8t+2V and E = U/2 for U 4 8t+2V. In 
the first case, all sites are singly occupied and the probability Pt (P&) that a site be occupied 
by an t (4) spin is 4. The probability P T ~  (PO) that a site be doubly occupied (empty) is 
zero. So the local moment LO = $ = 0.75 (the a factor comes from the fact that Sz for 
a spin-; object is ;(: + 1) = a). In the second case Pr = Pa = 0 and PTA = PO = 2' 
Therefore the CDW state possesses a local moment Lo = 0. Apart from these exact results 
there is nothing known exactly in the region where 2V - 8t < U < 2V + 8f. With this in 
hand we proceed to explain the real space RG results. 

3 
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Figure 3. Plot of the ground state energylsite E against U for differmi V for the bond-charge 
interaction X = t (z = 1.0). 

The ground state energy per site E is plotted against U for different V in figure 3. 
The local moments also plotted against U and parametrized by V are shown in figure 4. 
It appears that the energy curve consists of two linear regions, one for U < U,, where 
E = U/2 and the other for U U, where E = V. Correspondingly in figure 2 we see 
that LO = 0 for U 6 U,, while LO = 0.75 for U < U,. Now, €or each V, U=, > 2V - 8t 
and U, < 2V + 8t. Thus for the regions where exact results are available, the RG method 
reproduces the exact values of energy and local moment. We also conclude that the 2'-fold 
paramagnetic region with E = V extends up to U - U,, well below the lower bound 1131 
U = 2V + 8f and that the CDW state with E = U/2 extends up to U - U,,, well above 
the upper bound U = 2V - 8t. It is notable that U,, and U, gradually increase with the 
increase of V which is also expected naively. 

The most striking result is that in between U,, and U, there appears a wide plateau- 
l i e  structure with LO = 0.375 in the plot of the local moment. Now for the case when 
P+ = P4 = PO = P+s = = 0.375. Usually this happens for the 
freefermion metallic case. But it may appear that this kind of a model cannot have a 
metallic ground state in ID for the following reason. Let us recall the fact that the special 
kind of restriction on single-particle hopping considered here has the property of conserving 
the number of double occupancies. Consequently, whenever a double occupancy and an 
empty site come side by side single-particle hopping gets quenched. Again, if two eIectrons 
of opposite spins come at adjacent sites further hopping stops (the term (1 - nl-., - n,--) 
of (12) is zero in both cases). Therefore, in such a half-filled case, no long-range hopping 
seems possible in a truly infinite chain because at some place or other this kind of situation 
occurs. From RG point of view the lattice must contain (renormalized) single paaicles 
side by side or an adjacent empty site and doubly occupied site at some renormalized 
length scale-resulting in the blockade of long-range hopping. Moreover in this region 

we obtain LO = 
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0 
1 0.375 
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Figure 4. Plot of the local moment 
x = t (1 = 1.0). 

against U for different V for h e  bond-eharge interadon 

(LO = 0.375) if one starts from a non-zero value of U / t ,  however small, the RG iterations 
of U / t  flow to CO; this also gives an indication that this phase is not metallic. But equal 
probabilities of all the four configurations (as suggested by Lo = 0.375) indicate that the 
electrons are freely mobile over a finite length scale. Therefore, from the present RG point 
of view, this is a non-metallic phase with a free-fermionic local moment, although a recent 
work [I51 identifies this phase as a metallic one for the V = 0 case. 

In figure 5 we have plotted the densitydensity autocorrelation function N ( q )  defined 
in (17) for q = x .  We see that for U < U,,, where LO = 0, this quantity sharply diverges 
pointing out a CDW state. Other q branches do not show a sizeable value. This indicates 
that the CDW is chess-bod type. This is also in perfect agreement with the available exact 
result [13]. 

7. Conclusion 

In conclusion, we have investigated the problems with an existing real space RG scheme 
for the extended Hubbard model and tried to find a reasonable solution for it. Then we 
apply this modified RG method to study the extended Hubbard model with and without the 
bond-charge interaction (for a special value of the interaction) for the 1D half-filled case. 

For the case without the bond-charge interaction we obtain a CDW/SDW phase 
boundary which agrees excellently with the available Monte Carlo results. In the case 
of the bond-charge interaction we have reproduced some exact results in one region of 
the parameter space (only where the exact solution 1131 is known). We find that the two 
limiting phases, namely the singleoccupancy paramagnetic phase and the CDW one, extend 
well inside the parameter space where exact results are not available. Moreover we find 
an intersecting non-metallic phase (for small and intermediate values of V) with metallic 
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Fm 5. Plot of the density-density autocorrelation functions N(q)  affdinst U (for di f fmt  
V) for q = H for fhe bonddarge interaction X = t (r = 1.0). 

(free-fermionic) local moment. 
It is worthwhile to study this model with larger cell size to achieve numerical reliability 

in the intermediate region (since there is no exact result) and observe the fate of the small 
structures in the local moment plot (with Lo other than 0, 0.375 and 0.75) as well as 
the precise positions of U,, and U,. The interesting phase of the LO = 0.375 plateau 
requires some attention and a proper order parameter, if any, could be identified for the 
same. It would be interesting to study the cases where X # t .  This, of course, will change 
the physics e.g. the 2'-fold-degenerate paramagnetic phase will then be pushed towads 
antiferromagnetic ordering. This and the non-half-filled case may have an effect especially 
on the LO = 0.375 phase. A problem with using such a method directly in these cases is 
the lack of p h  symmetry which may be bypassed by using a suitable approximate scheme 
[16]. The present RG scheme is often found to bring out the essential physical features 
correctly; however, it is well known that this scheme cannot claim a very high degree 
of accuracy in the numerical results. The reason behind this drawback has recently been 
addressed by White [17] and an alternative approach to the RG scheme has been developed. 
This apparently promising method, known as density mahx RG [17], can as well be an 
alternative tool for these investigations; however, this requires heavy computation. Finally, 
it may be fruitful to study this model in higher dimensions for its obvious utilization [lo]. 
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